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Summary -gna

Activity under this contract has centered on two gene-fa -

problem areas related to the airborne detection of underwater

7 targets. The first utilizes anomalies in the earth's magnetic

field to detect the presence of a target, while the second is a

o detection problem associated with returns from an optical radar.

Two models and approaches for the detection of targets by

means of measuring magnetic anomilies have been studied. In the

first, the nonlinear equations relating target position to it's

magnetic signal are used directly. After a preliminary study of

some recursive estimation techniques, a more detailed study of

using an extended Kalman filter as an off-line sequential esti-

mator was undertaken. A novel idea in this approach was to

process the data with random samples rather than in the causal

sequential order in which they occur. As discussed below in Section

A.1, this enhances convergence of the parameter estimates since it

S avoids directly processing correlated data.

The second model is a linear version of the nonlinear equa-

L tions, and a combined detection - estimation problem is formulated.

As discussed in section A.2, approximate non-Gaussian (and robust)

state estimation combined with sequential likelihood ratio pro-

cessing appears to be an attractive approach for detecting targets

in a Iswitching environment,# and also where models are not very

refined. -
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In the second general problem area, optical radar returns

are modeled as point processes. For interarrival time obser-

vations, optimal (likelihood ratio) and suboptimal detector

systems have been investigated. Focus has been directed on a

canonical receiver structure and effective adaptive (or learning)

procedures. Adaptive procedures are particularly important in

this instance since the channel model (the ocean-air medium) is

not very well known. This is discussed further in section B

be low.

A. Recursive Procedures for Magnetic Detection of Targets

We have investigated two models and approaches for the de-

tection and tracking of underwater targets through magnetic anomaly

observations. The first approach is a combined detection - esti-

mation problem with a linear model. In the second, the nonlinear

equations which represent the target's induced magnetic field are

dealt with directly.

A.1 Recursive Nonlinear Parameter Estimation

A magnetic dipole is induced in a steel target, which results

in an anomaly of the earth's magnetic field. At distances several

times greater than the target's length, the field intensity is

given by ([11, p. 247, Eq. (21)),

H= - - (4aM A)-3 (Da-r a-e
417r3

where M is the magnetic dipole moment, or the distance between5

the magnetometer and target, and a r a m-a erepresent unit vectors
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in the directions of the distance, magnetic dipole and earth's

magnetic field. This equation can be translated into Cartesian

coordinates or any other convenient set ([ll, Eq. 6). A linear-

ized version is the model to be discussed in the next section.

Here, target parameters are estimated directly from the nonlinear

equations.

For illustrative purposes, assume there are three parameters,

e.,i=l,2,3, which describe the target. A noiseless magnetometer

reading is given by

Ht=f (R.,t) (2)

where t denotes the sampling time and 8 represents the vector of

the three parameters. With H tthe actual reading, the residual

term is

T 2

One then looks for estimates of e which minimizes (3) or some re-

lated error function. Clearly, it is most desirable to do this

recursively and in real time. However, the straightforward appli-

cation of a recursive estimator to nonlinear regression (curve

fitting) problems is sometimes not possible when the sequentially

generated data tends to be correlated, i.e., when minimizing the

error using a local segment of the data (say the first 100 points)

does not ensure that the error is minimized globally. This is
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especially true when good a prior parameter estimates are not

available.

We have found some of these problems to arise with the above

model and using estimation techniques such as multidimensional

stochastic approximation and extended Kalman filtering. Some of

our recent work under the contract ([23) illustrates clearly a

poteaftial problem: if the error surface is plotted (as a function

of two parameters) with the number of observations changing from

figure to figure, the multipeak nature of the surface is evident.

What this means is that, as discussed above, when using the first

100 data points, there is a tendency to head for local minima.

It is only when all the data is processed can you attempt to

guarantee a global optimum solution.

There are three alternate possibilities. One is to change

the model as discussed in section A.2 below. The second approach

is to run parallel sequential estimators on the same data, using

different starting points with, for example, a majority test to

specify the global optimum point. The third is to process the

data offline in a quick and efficient manner. As part of the

project activity, we have also investigated this third approach

and the results look promising.

Rather than use a conventional iterative technique (i.e.,

gradient) to process all the data, we have used an extended Kalmnan

filter as an off-line sequential estimator. The reason for this

has to do with the potential computational savings. The novel idea
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I
in this approach is to process the measurements in a random order

rather than in the causal sequential order in which they occur.

This avoids the problem of having to deal with, say, the first

100 observations which tend to be more correlated and lead to

parameter estimates which do not approach the true parameters.

We have shown in Ref. 2 that the extended Kalman filter can

be viewed as an approximate recursive descent procedure. Using

an idea developed in [3j,"ficticious" measurement noise is in-

cluded in a simple manner to enhance convergence. The results

of the analysis and computer simulations are given in Ref. 2.

An intuitive reason why faster convergence is obtained is because

by random sampling over all the waveform (observations) one

builds up more quickly a "global surface" and does not initially

deal with correlated data.

Since the RSKF (random sampling extended Kalman filter) does

not explicitly depend on the particular model, it is potentially

as useful in other comparable non-linear regression problems.

A.2 Combined Estimation-Detection

As discussed above, another approach is to work with a different

model. If sampling rates are high enough a linear model for air-

craft dynamics and magnetometer readings can be used. These

equations are:

= 'k-34 + Bk k- + Vk-I

where the first equation denotes aircraft dynamics and Xk is the

b -- .



magnetometer observation vector. The quantities are defined as

follows:

xk - a vector of six components, denoting aircraft position

and velocity.

uk - pilot control inputs.

vk - system noise, e.g., wind gusts.

Ak* k - system matrices which are time varying, since they

represent a linearized model of the aircraft trajectory

and, hence, depend on the state of the system.

Yk - observation vector which is the total magnetic signal

recorded by the magnetometer.

W k - observation and instrument noise. This term includes,

for example, ocean swells, geological deposits,

geomagnetic influence, and the induced magnetic field

of the aircraft.

Hk - observation matrix which is time-varying for the same

reason Ak,B k are time-varying.

2 k - target signal which is modeled as a random vector.

The parameter ak is a sequence of zeros or ones, depending on

whether a target is present or not. (It may or may not be con-

sidered a random variable.)

Given the sequence of observations, Y- * k1, 2,,... the

detection problem is to decide between the two hypotheses

H 0: no target present, i.e., a k -o all k

H1 : target present, not all CLk 0.
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The estimation part of the problem is to determine the state,

Xk o of the aircraft. This is needed for at least two reasons.

First, the earth's magnetic field is so much larger than that in-

duced by a possible target, it must be subtracted from the ob-
A A

servation, i.e., decisions are based on (Ykyk = Y-k_'~ kk.

Secondly, Hk depends on xk, since, in the linearized model, it

represents the gradient of the earth's magnetic field evaluated

at the aircraft position.

Project activities concerning this model are presented in

Ref. [4]. The problem has been formulated as one of sequential de-

tection (i.e., real-time on-line) in a switching environment

Lk is either 0 or 1, thus introducing another noise-like signal).

The Bayesian optimal detector is not practical, since it requires

exponentially growing memory and numerical integration of prob-

ability density functions. Three suboptimal approaches were in-

vestigated:

i) the decision - directed procedure

ii) the linear least-mean-square-error procedure

iii) approximate non-Gaussian procedure.

As discussed in [4J, these three approaches refer to how the means

and variances for the state of the system are computed. A pre-

liminary computer simulation study has indicated that the approxi-

mate non-Gaussian approach had the best performance while the de-

cision-directed technique the least favorable. In terms of proba-

bility of detection error, in contrast to state estimation error

variance, ii) and iii) lead to almost the same results. The



F--

most promising approach is iii) with robust state estimates.

This is so because good models for unwanted signals such as geo-

logical deposits, ocean swells, etc..., do not exist.

A.3 Models with Interrupted Observations

We have also investigated an observation equation of the form

where ¥k is a multiplicative disturbance, 3k an additive noise,

and Lk the information bearing signal. This signal is assumed to

evolve through a linear system

where the Pk sequence is independent, thus making the signal Markov,

a model often used for signal sources.

We studied and answered the following question: can recur-

sive linear estimates of xk be obtained? It turns out that esti-

mates of the desired form

-k+l k kkk+l

can be obtained only if the sequence Yk is either independent or

a stationary Markov claim with idempotent transition matrix. This

latter case includes some interesting mixture processes. The

results of this aspect of the project are discussed in detail in

Es].
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B. Adaptive Processing of Point Processes

Optical radar returns can be considered as randomly-arriving,

random-amplitude pulses and point processes appear to be a natural

way to model these pulses which are basically discontinuous in

time. The interarrival times have been modeled with a two-

parameter Gamma distribution. Letting x denote the interarrival

time, the density is

k k-i.e-Ux
f bxI P k) " k xk-e-4

' r (k)

With two free parameters, k and p, this distribution can model a

variety of returns. Although the interarrival times are inde-

pendent, the counts are not, i.e., they are not necessarily

Poisson. This would be the case, for example, with returns from

an extended target such as a submarine.

It is unrealistic to assume precise knowledge of the two

parameters A and k. Assigning a prior density, n-,k), one can

then define a marginal density

f (x) V/f f(x 4, k) r(GA, k)dkd4

and use this for likelihood processinq. Let.

S-k/, 82 =k

and define the sufficient statistic

t= (tlt2)I

n n
tl= X . tl2= Ein(xi
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In Ref. [6], it is shown that the likelihood ratio exhibits a

two-dimensional estimator-correlator structure:

to
j() [i(Ul'U 2 )dUl+ 2 (Ul'U2 )du 2l

This quantity is then compared to a threshold which contains
A

parameters from the null (no target) hypothesis. The 9. are
1

conditional mean estimates, i.e.,

Aa i E(B }tilt 2 )

We have studied adaptive procedures since accurately modeling

optical returns is usually very difficult and one must learn the

channel characteristics. This observation is summarized by

saying we do not know precisely the prior pdf 11( i,k) and, hence,
A

cannot compute the estimates 8.. By adaptive, then, we mean

approximating the conditional mean estimate by other estimates

requiring less knowledge. These estimates are then used in the
A

detector structure in place of the Bi. In Ref. [6], a number of

suboptimum procedures have been evaluated. These include: the

MLE detector; the truncated MLE detector in which just the boundaries

(range) of the parameters bA and k are assumed known; the discrete

MLE where k is assumed to take on one of a discrete set of values.
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The simulation results ( [6], page 18) indicate that performance

is surprisingly good when compared to the performance of the

optimum detector. This is true even for the important small

sample case - an especially encouraging result.
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